Recent developments in sediment monitoring in Japanese rivers

Shusuke Miyata

Kyoto University Free University of Bozen-Bolzano

Taro Uchida

National Institute for Land and Infrastructure Management, MLIT, Japan

Sediment monitoring in Japanese rivers

Standardized 60 monitoring stations have been established by the Japanese government.

Sediment related issues in mountain areas

Can we know impacts of mass movement in the upper reach during storm?

Flood caused by deposits in channels

Sediment related issues in mountain areas

 Watershed management
 Quantity and quality of sediment from mountain streams are critical.
 Even in a basin, tributaries show different characteristics of sediment runoff.

Why sediment monitoring in mountain rivers?

Why not numerical simulations?

- Mountain rivers include inherent complex geometry.
- In general, mountain rivers are under supplylimited conditions.
- Field data is insufficient to validate the simulations.

Contents of monitoring

Water level gauge -> discharge
 Turbidity sensor -> suspended load
 Japanese pipe hydrophone

 (pipe microphone) -> bedload

Bedload transport

Suspended transport

Optical backscatter type turbidity sensor

Max measurement: 0 – 4000 NTU -> 0 – 5 (or 10) g/l for mud -> 0 – 50 (or 100) g/l for sand

Outcome of standardized monitoring

Annual amounts of sediment transport

- Monitoring results revealed remarkable impact of plantation and erosion control works.
- Bedload transport was dominant in the sparse forest, while SS was dominant runoff process in the forested catchments.

Problems of monitoring: Bedload

- 1. Noise of the stream water hides signals of fine particles.
- Multiple bedload hitting a pipe can cause underestimation of the measured transport rate.
- 3. Saltating bedload potentially results in underestimation.
- 4. A single pipe is insufficient to involve crosssectional distribution of bedload transport.

Combination of vertical and horizontal pipes

Effects of the combination

Bedload [kg m⁻¹ min⁻¹]

This approach can calculate total acoustic signal by bedload transport including saltating bedload. *Tsutus*.

Tsutusmi et al. (2018)

Problems of monitoring: Suspended sediment

- Common turbidity sensors are effective to wash-load. Courser suspended load is not reasonably measured by the turbidity.
- II. Monitoring of a single turbidity sensor can not catch vertical distributions of concentration.
- III. Frequent elevations changes of riverbed and stream surface in mountain rivers may cause malfunction of sensors.

Application of TDR (time domain reflectometry) to sediment concentration measurement

1. Measurement of dielectric constant ε_{obs} using TDR

2. Calculation of ratios of water ($\varepsilon_w = 80$) and sand ($\varepsilon_s = 3$)

$$\sqrt{\varepsilon_{obs}} = (1 - \theta)\sqrt{\varepsilon_w} + \theta\sqrt{\varepsilon_s}$$
 (Dobson et al. (1985))

Lab. experiment for validation

<u>5 coil-typ</u>e probes & a 3-rod probe

Monitoring at the sparse forest catchment

 Sediment concentration by TDR Heights of 0.03 - 0.23 m
 Sampling at various heights for suspended load Heights of 0.02 - 0.15 m
 Water level, Turbidity

Comparisons between sampling and TDR during a storm in June 2017

Sediment concentration: TDR > Sampling.
 Vertical profiles (higher at the bottom) were found.

Particle size distributions of sampled suspensions

the sum of wash-load and suspended sediment.

Heavy storm event in Oct. 2017

Vertical profiles of concentration

C[-]

Modelling of concentration profile

Calculated and measured profiles

Rouse distribution with the measured near-bed concentrations showed better fitting with the observation.

Runoff of suspended sediment during the event

Averaged concentration and SS transport can be calculated when concentrations at the near-bed height were obtained.

Summary

- In Japanese mountain rivers, standardized sediment monitoring systems are established.
- Sediment runoff data in 60 stations have been collected and analyzed to understand characteristics of each catchment and/or detect mass movement in the upper reach.
- Monitoring methods of bedload and suspended load are improved.

Measured (TDR) and calculated $C_a s$

 W_0/u_* was calculated using hydraulic conditions at each time.

Effects of particle size

The profiles during the high discharges were well simulated with d=1.0 mm.