Sediment management in channel networks: from measurements to best practices

Bedload transport monitoring and modelling: state of the art

Dieter Rickenmann

WSL - Swiss Federal Research Institute Mountain Hydrology and Mass Movements Birmensdorf, Switzerland

1) Direct bedload transport measurements

2) Surrogate bedload transport measurements

with acoustic systems

3) Bedload transport modelling: example

applications of the "sedFlow" code

4) Concluding remarks

Direct measurements of bedload transport

Helley-Smith and pressure difference samplers

Bedload net with truck

Swiss Federal Research Institute WSL

Sediment budget from repeated cross-section surveys

The Erlenbach bedload observatory

- small catchment (0.7 km²)
- long-term sediment transport observations (>30 years)
- step-pool morphology
- channel slope: 0.17 mean;
 0.105 us of station

Surveys of sediment deposits

Automatic bedload sampling with moving baskets (2009 ff)

Swiss Federal Research Institute WSL

Automatic bedload sampling with moving baskets (video)

video moving basket

1) Direct bedload transport measurements

2) Surrogate bedload transport measurements with acoustic systems

3) Bedload transport modelling: example

applications of the "sedFlow" code

4) Concluding remarks

Different generations of acoustic systems

- Steel plates with standard dimensions (36 cm x 50 cm)
- acoustic isolation (elastomer)
- sensor mounted in aluminum housing, fixed in center of plate
- sensor records deformation velocity of steel plate

1986 – 1999 piezoelectric bedload impact sensor

2000 ff geophone sensor

Swiss Federal Research Institute WSL

Swiss plate geophone measurements at various sites

Stream	Location	Drainage area	Operation period	Calibration
		(km²)	(sensor type)	
Erlenbach (basin)	Alptal, Schwyz, CH	0.7	1986-1999 (PBIS), 2000+ (GS)	yes
Erlenbach (bridge)	Alptal, Schwyz, CH	0.5	1995-1997 (PBIS), 2002+ (GS)	—
Vogelbach	Alptal, Schwyz, CH	1.6	1999+ (GS)	—
Pitzbach	Pitztal, Tyrol, AT	27	1994-1995 (PBIS)	yes
Spissibach	Leissigen, Berne, CH	2.5	1998-2010 (PBIS)	yes
Rofenache	Vent, Tyrol, AT	98	2000+ (GS)	yes
Drau	Lienz, Tyrol, AT	1876	2002+ (GS)	yes
Drau	Dellach, Carynthia, AT	2300	2006+ (GS)	yes
lsel	Lienz, Tyrol, AT	1199	2006+ (GS)	yes
Schweibbach	Eisten, Valais, CH	9.7	2007+ (GS)	-
Fischbach	Mühlau, Tyrol, AT	71	2008+ (GS)	yes
Ruetz	Mutterbergalm, Tyrol, AT	28	2008+ (GS)	yes
Riedbach	Grächen, Valais, CH	18.7	2009+ (GS)	yes
Nahal Eshtemoa	Negev Desert, Israel	119	2009+ (GS)	yes
Elwha River	Washington, USA	833	2009+ (GS)	yes
Navisence	Zinal, Valais, CH	82	2011+ (GS)	yes
Ötztaler Ache	Sölden, AT	197	2011+ (GS)	yes
Urslau	Maria Alm, Salzburg, AT	55	2011+ (GS)	yes
Suggadinbach	St. Gallenkirch, AT	75	2013+ (GS)	yes
Ashiaraidani	Hodako Observatory, JP	6.5	2013+ (GS)	yes
Solda River	Valle Venosta, I	130	2014+ (GS)	yes
Albula River	Tiefencastel, CH	529	2015+ (GS, AS)	(yes)
Avancon de Nant	Pont de Nant, Vaud, CH	13.5	2015+ (GS)	(yes)

Swiss plate geophone (SPG): Example of signal, Impuls counts

Calibration of the Swiss plate geophon system at the Erlenbach

→ Linear calibration between impulses and bedload mass works well at Erlenbach

Swiss Federal Research Institute WSL

(Rickenmann et al. 2012, ESPL)

Effect of extreme flood event (20 June 2007) on transport

Comparison of SPG signal response at different sites

\rightarrow Maximum grain size correlates with signal strength, almost independent of site

Swiss Federal Research Institute WSL

(Rickenmann et al. 2014, ESPL; Wyss et al. 2016, WRR)

Grain size identification and flux estimation with the SPG

Hypothesis:

→ Amplitude Histogram method

- \rightarrow signal amplitude is a function of the size of the transported particle
- \rightarrow every particles collides only once against the steel plate
- \rightarrow amplitude thresholds can discriminate between grain-size classes

Grain size identification: Amplitude Histogram (AH) method

Application of AH method to Erlenbach

(*) moving average over 10 min

 \rightarrow Grain sizes correlate with bedload flux (over 2 orders of magnitude)

Swiss Federal Research Institute WSL

WSI

1) Direct bedload transport measurements

2) Surrogate bedload transport measurements

with acoustic systems

3) Bedload transport modelling: example applications of the "sedFlow" code

4) Concluding remarks

sedFlow-WSL: 1d bedload transport simulation

Main objectives

Application to mountain rivers, fast computations (multiple scenarios)

Key elements

- rectangular cross section, 1-dimensional calculation (hydraulics and bedload transport)
- fractional bedload transport calculations, active layer, evolution of longitudinal profile
- optional limitation of erosion depth (bedrock, large boulders)
- channel network, lateral water and or sediment input (fluvial or debris flows)

Hydraulics

- kinematic wave (explicit, implicit with analytic approximation after Liu & Todini 2002)
- simplified hydraulics (no flow routing), also allowing for adverse bed slopes
- variable power equation of Ferguson (2007) for steep and shallow flows

Bedload transport

- Lamb et al. (2008) for initiation of motion
- Rickenmann (2001) or Wilcock-Crowe (2003) for transport
- use of reduced energy slope to account for macro-roughness (Rickenmann-Recking 2011)

sedFlow: calibration in Swiss mountain rivers

Kleine Emmer River

Brenno River

480 km² 2000 - 2005

catchment size cross-section surveys

400 km² 1999 - 2009

Swiss Federal Research Institute WSL

(Heimann et al. 2015a, 2015b)

sedFlow calibration: Kleine Emme River

sedFlow calibration: Brenno River

Application of sedFlow + BASEMENT: Vispa + debris flow

 Debris flow event on 15 October near Neubrück (north of Stalden)

Flood event of 14-16 October 2000

- Debris flow Beiterbach: sediment input into Vispa River: 60,000 – 80,000 m³, in three surges
- Two fatalities, damage to (railroad) infrastructure, damming of Vispa River, changes of channel morphology

Swiss Federal Research Institute WSL

WSL

Flood event of 14-15 October 2000

Flood event of 14-15 October 2000

Swiss Federal Research Institute WSL

⁽Briner 2016; Rickenmann 2017)

1) Direct bedload transport measurements

2) Surrogate bedload transport measurements

with acoustic systems

3) Bedload transport modelling: example

applications of the "sedFlow" code

4) Concluding remarks

Bedload transport monitoring in steep rivers

- Direct bedload sampling in mountain rivers is possible (up to mean flow intensities) but challenging
- The Swiss plate geophone (SPG) system can be used to determine both total bedload flux and fractional bedload transport rates
- SPG or similar acoustic bedload transport measurements are helpful to improve the process understanding of bedload transport

Bedload transport simulations in mountain rivers

- for example cases: bed level changes and sediment budget is rather well constrained
- simulated changes (sedFlow examples) in bed level and total transported bedload agree reasonably well with observations
- note calibrated components: GSD (Kleine Emme), channel width (Brenno), channel slopes of tributaries (Vispa, sedFlow), selection of bedload equation (BASEMENT)

Thank you for the attention.

